Oxygen Tension Variation in Ischemic Gastrocnemius Muscle, Marrow, and different Hypoxic Conditions In Vitro
نویسندگان
چکیده
BACKGROUND Bone marrow stromal cells (BMSCs) play an important role in ischemic limb angiogenesis. BMSCs cultured in vitro can be exposed to oxygen tension much higher than that experienced in vivo. This study assessed oxygen tension in bone marrow and ischemic muscle in vivo, and then identified an appropriate oxygen concentration for culturing BMSCs. MATERIAL/METHODS Unilateral hind limb ischemia was surgically induced in 30 mice, and tissue oxygen tension in bilateral gastrocnemius muscles and femoral bone marrow was monitored in vivo using a micro-electrode at 24 hours, 1 week, 2 weeks, and 3 weeks after modeling. Media used for culturing normal marrow, muscle, and artery tissue were incubated with various oxygen concentrations, and O2 tension was continuously monitored. Oxygen tension in aortic arterial blood was monitored using a micro-electrode and blood gas analyzer, and the results were compared. RESULTS Oxygen tension in ischemic gastrocnemius muscle reached a nadir at 1 week after ischemic modeling, when histological changes were most noticeable. Culture media incubated with 3%, 6%, and 14% oxygen (the normal oxygen levels of bone marrow, muscle, and arterial blood, respectively) required 9, 6, and 2 hours, respectively, to reach an equilibrated oxygen tension, and oxygen tension was elevated by 1.6-, 1.2-, and 0.4-fold, respectively, upon re-exposure of the media to air. CONCLUSIONS Physiological oxygen tension differs in different tissues. A 3% O2 concentration mimics the physiological O2 exposure experienced by BMSCs and represents the hypoxic concentration. Culture medium incubated under hypoxic conditions requires a prolonged period of time to regain equilibrated oxygen tension.
منابع مشابه
تأثیر غلظت 1% اکسیژن بر بیان ژن Conexin 43 در سلولهای بنیادی مزانشیمی مشتق از مغز استخوان موش (C57(BL/6
Introduction: Oxygen tension is one of the most important stimuli in stem cell biology. In this study, we investigate the considerable influence of hypoxia on CX43 gene expression as one of the most important gap junction on the surface of mesenchymal stem cells. Methods: Mesenchymal stem cells were isolated from C57BL/6 mouse bone marrow and cultured in DMEM medium under low oxygen tension (...
متن کاملOxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions
Provision of supplemental oxygen to maintain soft tissue viability acutely following trauma in which vascularization has been compromised would be beneficial for limb and tissue salvage. For this application, an oxygen generating biomaterial that may be injected directly into the soft tissue could provide an unprecedented treatment in the acute trauma setting. The purpose of the current investi...
متن کاملOne more stem cell niche: how the sensitivity of chronic myeloid leukemia cells to imatinib mesylate is modulated within a “hypoxic” environment
This is a review (by no means comprehensive) of how the stem cell niche evolved from an abstract concept to a complex system, implemented with a number of experimental data at the cellular and molecular levels, including metabolic cues, on which we focused in particular. The concept was introduced in 1978 to model bone marrow sites suited to host hematopoietic stem cells (HSCs) and favor their ...
متن کاملRadiosensitizing effects of gemcitabine on aerobic and chronically hypoxic HeLa and MRC5 cells in-vitro
Background: Gemcitabine (2′, 2′-difluoro-2′- deoxycytidine, an analogue of deoxycytidine) is a relatively new drug with wide range of anti-cancer activity. In this study, radiosensitizing effects of gemcitabine was investigated on HeLa and MRC5 human originated cell lines under both chronically hypoxic and normoxic conditions using the micronucleus (MN) assay. Materials and Methods: F...
متن کاملDietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb.
Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet ric...
متن کامل